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q-oscillator representations of Hermitian braided matrices
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Abstract. Representations of the braided algebra ofBMq(2) in a Hilbert space are constructed.
The generators of this algebra are expressed in terms of two independentq-oscillators. It is shown
that, apart from a factor ofU(1), these generators reduce to the ordinary angular momentum
algebra generators in theq → 1 limit.

The role of Lie groups in physics and especially in quantum theory is crucial. Quantization
of classical completely integrable nonlinear systems requires that the classical Lie group
should also be quantized. Then one obtains a completely solvable quantum system. This has
introduced the concept of quantum groups [1] into physics and mathematics. For a quantum
matrix group the elements of a matrix do not commute between themselves. However, when
the ‘group product’ is taken, elements of different matrices commute. Majid has argued
that this property which already does not hold for supermatrices belonging to a supergroup,
has to be generalized to define the so-called braided matrix group [2]. Mathematically
speaking, a quantum matrix group is a Hopf algebra in the category of vector spaces with
the usual commutative tensor product, whereas a braided matrix group is the same in a
quasitensor category [3]. Braided groups are like supergroups with the property that the(±1)
superstatistics is replaced by(−16 q 6 1) braid statistics. One of the main motivations of
braided groups is the existence of particles with braid statistics in low-dimensional quantum
field theories [4]. Braided groups can be used as a tool for performing quantum group
calculations in a fully covariant way [2]. This is called the transmutation [5] of a quantum
group into a braided group. After transmutation, the resulting braided group is braided
commutative. There is also an adjoint process that converts any braided group into an
ordinary quantum group [6]. So, braided geometry and super geometry are much closer to
classical geometry than the quantum case. Since every quantum group can be viewed as a
braided group we can conclude that braided group theory contains quantum group theory
and supersymmetry. Majid showed [7] that the braided matrix groupBMq(2) is isomorphic
to the Sklyanin algebra [8] and the algebra generated by the elements of a Hermitian matrix
which belongs toBMq(2) can be constructed in terms of the the generators ofUq(su(2)).
In this letter we will construct the representations of this algebra by taking the generators as
operators in a Hilbert space. We will present finite- and infinite-dimensional representations
of these operators and we will show that the spectrum of a non-negative operator is simply
the spectrum of a quadratic oscillator [9] described by the property that the commutation
relation between creation and annihilation operatorsa† and a can be expressed solely in
terms of a quadratic function ofaa† anda†a. We define the Casimir of this algebra in terms
of the quantum trace and the quantum determinant of the braided matrix.
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The matrix elements of the quantum matrix groupSUq(2) can be constructed in terms
of one q-oscillator and one central unitary operator, which for irreducible representations
in a Hilbert space is given by a complex phase [10]. On the other hand, Biedenharn
and Macfarlane have constructed the quantum enveloping algebraUq(su(2)) in terms of
two independentq-deformed harmonic oscillators [11]. This generalizes the Schwinger
construction used in the quantum theory of (su(2)) angular momentum. Using a similar
approach we construct the algebra of HermitianBMq(2) in terms of two independentq-
deformed harmonic oscillators. We find that if the deformation parameter ofBMq(2) is q,
then one of the oscillators is aq-oscillator and the other is aq−1-oscillator. The Fock space
representations of these oscillators are constructed. Finally, we discuss theq → 1 limit. If
this limit is taken in a certain way we show that apart from a constant operator whose limit
is singular, elements ofBMq(2) reduce to the generators ofsu(2).

An elementu = (a b
c d

)
of the braided quantum matrixBMq(2) satisfies the relation

R21u1R12u2 = u2R21u1R12 (1)

whereu1 = u ⊗ I, u2 = I ⊗ u and theR-matrices are theSLq(2) R-matrices satisfying
the quantum Yang–Baxter equation (QYBE). Equation (1) gives the relations

ba = q2ab

ca = q−2ac

ad = da
bc = cb + (1− q−2)a(d − a)
db = bd + (1− q−2)ab

cd = dc + (1− q−2)ca.

(2)

To find a representation in a Hilbert space we need to specify hermiticity conditions for
a, b, c and d. To this end we chooseu to be Hermitian and obtaina† = a, d† = d

and c = b†. It can be shown thatb†b, bb†, a, and d form a commuting set. So for a
representation in a Hilbert space we can take this set to be diagonal operators together with
b† andb acting as raising and lowering operators, respectively. In other words, we have

a |n〉 = an |n〉
d |n〉 = dn |n〉
b |n〉 = bn |n− 1〉
b† |n〉 = b∗n+1 |n+ 1〉.

(3)

Using the braided algebra relations (2) we find that these are satisfied provided that

an+1 = q2an

dn+1 = dn − (1− q−2)an

b∗n+1bn+1 = b∗nbn + (1− q−2)an(dn − an).
(4)

These difference equations have the solutions

an = q2na0

dn = d0+ a0q
−2(1− q2n)

b∗nbn = Aq4n + Bq2n + C
(5)
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where

A = −a2
0q
−4

B = a0q
−2(d0+ q−2a0)

C = b∗0b0− q−2a0d0.

(6)

The spectrum ofb†b is the same as the spectrum of the quadratic oscillator in [9]. To
have the Fock space representations we should have a ground state which is annihilated
by the lowering operator, i.e.b | 〉 = 0. Using equations (5) we find that the quantum
determinantad − q2cb has the eigenvaluea0d0 in this space and different values ofd0 will
give different representations. Herea0 and d0 are integration constants of the difference
equations. Together with the conditionsq2 < 1 and a0d0 < 0, we have the infinite-
dimensional representations

an = q2na0

dn = d0+ a0q
−2(1− q2n)

b∗nbn = a0q
−2(1− q2n)(q2(n−1)a0− d0)

 n = 0, 1, 2, . . . . (7)

For d0 = q2(N−1)a0 we have the finite (N )-dimensional representation with states|n〉 =
|0〉, |1〉, . . . , |N − 1〉. The eigenvalues of the diagonal operators are

an = q2na0

dn = a0q
−2(q2N − q2n + 1)

b∗nbn = a2
0q
−4(1− q2n)(q2n − q2N).

(8)

Note thata0 appears as a multiplicative factor for all elements (a, b, b† andd) of matrix u
and hence defines a commutative factor<. Taking the quotient of the Hermitian braided
matrix by< corresponds to choosing a particular value fora0. This choice does not have
to be a real number sincea0 can depend arbitrarily on any central element of the algebra
generated bya, b, b† andd. We definem, j and for later convenience choosea0 such that

m ≡ n− N − 1

2

j ≡ N − 1

2

a0 = q2

1− q2
A.

(9)

Then equations (8) become

an = q2(j+m+1)

1− q2
A

dn = q2(2j+1) − q2(j+m) + 1

1− q2
A

bn = qj+m
(

1− q2(j+m)

1− q2

)1/2(
1− q2(j−m+1)

1− q2

)1/2

A

(10)

and the Casimir of the algebra is

C = q

A(1− q2)
(q−1a + qd)− 1+ q2

q4A2
(ad − q2cb). (11)
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In fact q−1a + qd is the quantum trace andad − q2cb is simply the quantum determinant
of braided matrices.

Consider two mutually commuting oscillators and number operators acting on Hilbert
spaces such that

a1a
∗
1 − qa∗1a1 = 1

a2a
∗
2 − q2a∗2a2 = qN2+1[

a1,a2
] = [a1, a

∗
2

] = 0

N1 |n1〉 = n1 |n1〉
N2 |n2〉 = n2 |n2〉

(12)

where theai are lowering and thea†i are raising operators which give

a1 |n1〉 =
(

1− qn1

1− q
)1/2

|n1− 1〉

a∗1 |n1〉 =
(

1− qn1+1

1− q
)1/2

|n1+ 1〉

a2 |n2〉 =
(
qn2 (1− qn2)

1− q
)1/2

|n2− 1〉

a∗2 |n2〉 =
(
qn2+1

(
1− qn2+1

)
1− q

)1/2

|n2+ 1〉

(13)

and by defining

j ≡ n1+ n2

2

m ≡ n2− n1

2

(14)

we obtain

a∗1a2 |n1〉 |n2〉 =
(
qj+m

(1− qj+m)
1− q

(1− qj−m+1)

1− q
)1/2

|j, m− 1〉

a∗2a1 |n1〉 |n2〉 =
(
qj+m+1 (1− qj+m+1)

1− q
(1− qj−m)

1− q
)1/2

|j, m+ 1〉(
N1+N2

2

)
|n1〉 |n2〉 = j |j, m〉(

N2−N1

2

)
|n1〉 |n2〉 = m |j, m〉.

(15)

The Casimir of the algebra formed bya∗1a2, a
∗
2a1, a

∗
1a1, etc, isC ′ = N1 + N2. By
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identifying

b ≡ a∗1a2A

b∗ ≡ a∗2a1A

a ≡ qN2+1

1− q A

d ≡ qN1+N2+1− qN2 + 1

1− q A

(16)

and substitutingq2 instead ofq, we see that this is simply a representation of the Hermitian
braided algebra inn1+ n2+ 1= N dimensions. Therefore

u = A


q2(N2+1)

1− q2
a∗1a2

a∗2a1

(
q2(N1+N2+1) − q2N2 + 1

)
1− q2

 (17)

is a realization of the braided matricesBMq(2). Here a†1 and a1 form a linear q-
oscillator [12], whereasa†2 anda2 form a squaredq-oscillator [9].

The arbitrariness of the constanta0 in (8) comes from the fact that when we multiply
a braided group element by central elements the braided algebra relations remain invariant.
Therefore we can defineA′ = q(N1+N2)A. By using (12) and defining

c1 ≡ q−N1a1

c∗1 ≡ q−N1+1a∗1

c2 ≡ q−(N2+1)a2

c∗2 ≡ q−N2a∗2

(18)

we obtain

c∗1c2 = q−(N1+N2)a∗1a2

c∗1c1 = 1− q−2N1

1− q−2

c∗2c1 = q−(N1+N2)a∗2a1

c∗2c2 = 1− q2N2

1− q2

(19)

and

c1c
∗
1 − q−2c∗1c1 = 1

c2c
∗
2 − q2c∗2c2 = 1.

(20)

Note theq → q−1 symmetry between these two independent linearq-oscillators. The
matrix

u = A′


qN2−N1+2

1− q2
c∗1c2

c∗2c1
qN1+N2+2− qN2−N1 + q−(N1+N2)

1− q2

 (21)
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constructed in terms of these oscillators is a Hermitian braided matrixBMq(2). The Casimir
of the braided algebra defined in (11) applied on a state|j, m〉 gives

C |j, m〉 = q2 (q
2(j+1) + q−2j − 1− q2)

(1− q2)2
|j, m〉. (22)

We renormalizeu by dividing out the central elementA′ and subtracting aq dependent
multiple of the identity matrix. We then take theq → 1 limit to obtain

lim
q→1

(
u

A′
− q2

1− q2
I

)
=

−
(N2−N1)

2
a∗1a2

a∗2a1
(N2−N1)

2

 (23)

wherea∗1, a1 a
∗
2 anda2 are simply the creation and annihilation operators of two independent

harmonic oscillators andN1, N2 are the corresponding number operators. Using the
commutation relations between these operators we can identify

1
2 (N2−N1) = J3

a∗1a2 = J−
a∗2a1 = J+

(24)

which satisfy the angular momentum algebra relations[
J3, J±

] = J±[
J+, J−

] = 2J3.
(25)

This is simply the Schwinger construction ofsu(2). The Casimir of the braided algebra
(11) in theq → 1 limit reduces to

lim
q→1

C = J+J− + J 2
3 − J3 (26)

and the eigenvalue in|j, m〉 basis is found to be

C |j, m〉 = j (j + 1) |j, m〉. (27)

This shows that finite-dimensional representations of the HermitianBMq(2)/<
constructed in this letter are in one-to-one correspondence with the finite-dimensional
representations ofsu(2). The unitarity conditionU †U = UU † = 1 for matrices belonging
to BMq(2) can be shown to be inconsistent with the commutations relations for the matrix
elements ofBMq(2). In contrast, the quantum groupSUq(2) which can be obtained by
imposing the unitarity condition onSLq(2) contains a singleq-oscillator and the algebra
satisfied by the matrix elements does not possess any finite-dimensional representations.
On the other hand, from this point of view, the braided matricesBMq(2) with non-zero
quantum determinant is similar to theq deformationsuq(2) of the su(2) Lie algebra.

In the Biedenharn–Macfarlane construction ofsuq(2) the generatorsJ+, J− andJ3 are
constructed in terms of two oscillators. However, these do not form a matrix. Another
important difference between the Biedenharn–Macfarlane construction and ours is that in
the former the two oscillators are identical copies of each other and there is aq → q−1

symmetry in normalization factors. In our construction theq → q−1 symmetry is preserved
as the interchange symmetry of the two oscillators, one of which is aq-oscillator and
the other is aq−1-oscillator. Imposing theq → q−1 symmetry on the oscillators makes
the construction unique among other choices. We would also like to mention that in our
construction the oscillators are not braided in the sense introduced by Majid and Baskerville
[13] in the context of the braided Heisenberg group.
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Any one-dimensional generalized oscillator can be constructed in terms of another and
in fact all one-dimensional oscillators can be constructed in terms of simple harmonic
oscillator creation, annihilation and number operators. SinceBMq(2) can be constructed
in terms of thesuq(2) algebra, andsuq(2) can be constructed in terms of Biedenharn–
Macfarlane oscillators,BMq(2) can also be constructed in terms of Biedenharn–Macfarlane
oscillators. However, this would be a very complicated construction. The point of this
letter is that the simplest construction ofBMq(2) is in terms of aq, q−1 pair of simple
q-oscillators.

The case of the quantum determinant being equal to zero (ad − q2cb = 0), like the
quantum groupSUq(2), contains just one oscillator and does not have any finite-dimensional
representations. To construct this representation we use (5) and set the quantum determinant
to zero, and obtain the conditiond0 = 0. Finally, we obtain the result that the matrix

u = a′0


q2N

(q−2− 1)1′2
b

b†
q−2(1− q2N)

(q−2− 1)1′2

 (28)

is an element of the Hermitian braided matricesBMq(2) with zero q-determinant. The
creation operatorb†, the annihilation operatorb and the number operatorN satisfy the
oscillator relation

bb† − q2b†b = q4N. (29)

One of the main motivations for introducing a deformation parameterq into physics
is the possibility of regularizing infinities. It is possible thatq 6= 1 will give quantum
corrections on the Planck scale. Then, after renormalization one can can setq = 1 to obtain
the effective theory at low energies. The importance and many uses of theSU(2) group in
present-day physics makes it crucial to investigate all properties of itsq-deformations. We
have shown that the matrix elements of Hermitian braided group matrices areq-deformed
generators ofSU(2).

The Schwinger-type construction of these generators which we have accomplished can
be applied to other braided matrices. Probably all Lie algebras can be generalized in this
way and can be shown to possess the interesting features we have investigated in this letter.
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